更多集群架构

# ES集群 ## 集群原理 >elasticsearch 是天生支持集群的,他不需要依赖其他的服务发现和注册的组件,如 zookeeper这些,因为他内置了一个名字叫 ZenDiscovery 的模块,是 elasticsearch 自己实现的一套用于节点发现和选主等功能的组件,所以 elasticsearch 做起集群来非常简单,不需要太多额外的配置和安装额外的第三方组件。 ## 单节点 ![image.png](https://cos.easydoc.net/13568421/files/lng127ru.png) - 一个运行中的 Elasticsearch 实例称为一个节点,而集群是由一个或者多个拥有相同cluster.name 配置的节点组成, 它们共同承担数据和负载的压力。当有节点加入集群中或者从集群中移除节点时,集群将会重新平均分布所有的数据。 - 当一个节点被选举成为 主节点时, 它将负责管理集群范围内的所有变更,例如增加、删除索引,或者增加、删除节点等。 而主节点并不需要涉及到文档级别的变更和搜索等操作,所以当集群只拥有一个主节点的情况下,即使流量的增加它也不会成为瓶颈。任何节点都可以成为主节点。我们的示例集群就只有一个节点,所以它同时也成为了主节点。 - 作为用户,我们可以将请求发送到 集群中的任何节点 ,包括主节点。 每个节点都知道任意文档所处的位置,并且能够将我们的请求直接转发到存储我们所需文档的节点。无论我们将请求发送到哪个节点,它都能负责从各个包含我们所需文档的节点收集回数据,并将最终结果返回給客户端。 Elasticsearch 对这一切的管理都是透明的。 ## 分片 - 一个 分片 是一个底层的 工作单元 ,它仅保存了全部数据中的一部分。我们的文档被存储和索引到分片内,但是应用程序是直接与索引而不是与分片进行交互。分片就认为是一个数据区 - 一个分片可以是 主 分片或者 副本 分片。索引内任意一个文档都归属于一个主分片,所以主分片的数目决定着索引能够保存的最大数据量。 - 在索引建立的时候就已经确定了主分片数,但是副本分片数可以随时修改。 - 让我们在包含一个空节点的集群内创建名为 blogs 的索引。 索引在默认情况下会被分配 5 个主分片, 但是为了演示目的,我们将分配 3 个主分片和一份副本(每个主分片拥有一个副本分片): ```kibana PUT /blogs{ "settings" : { "number_of_shards" : 3, "number_of_replicas" : 1 }} ``` ![image.png](https://cos.easydoc.net/13568421/files/lng14uca.png) 此时集群的健康状况为 yellow 则表示全部 主分片都正常运行(集群可以正常服务所有请 求),但是 副本 分片没有全部处在正常状态。 实际上,所有 3 个副本分片都是 unassigned —— 它们都没有被分配到任何节点。在同一个节点上既保存原始数据又保存副本是没有意 义的,因为一旦失去了那个节点,我们也将丢失该节点上的所有副本数据。 当前我们的集群是正常运行的,但是在硬件故障时有丢失数据的风险。 ## 新增节点 当你在同一台机器上启动了第二个节点时,只要它和第一个节点有同样的 cluster.name 配置,它就会自动发现集群并加入到其中。 但是在不同机器上启动节点的时候,为了加入到同一集群,你需要配置一个可连接到的单播主机列表。 详细信息请查看最好使用单播代替组播 ![image.png](https://cos.easydoc.net/13568421/files/lng16inj.png) 此时,cluster-health 现在展示的状态为 green ,这表示所有 6 个分片(包括 3 个主分片和3 个副本分片)都在正常运行。我们的集群现在不仅仅是正常运行的,并且还处于 始终可用 的状态。 ### 水平扩容-启动第三个节点 ![image.png](https://cos.easydoc.net/13568421/files/lng173c8.png) Node 1 和 Node 2 上各有一个分片被迁移到了新的 Node 3 节点,现在每个节点上都拥有 2 个分片,而不是之前的 3 个。 这表示每个节点的硬件资源(CPU, RAM, I/O)将被更少的分片所共享,每个分片的性能将会得到提升。 在运行中的集群上是可以动态调整副本分片数目的,我们可以按需伸缩集群。让我们把副本数从默认的 1 增加到 2 ```kibana PUT /blogs/_settings { "number_of_replicas" : 2 } ``` blogs 索引现在拥有 9 个分片:3 个主分片和 6 个副本分片。 这意味着我们可以将集群扩容到 9 个节点,每个节点上一个分片。相比原来 3 个节点时,集群搜索性能可以提升 3 倍。 ![image.png](https://cos.easydoc.net/13568421/files/lng18jql.png) ## 应对故障 ![image.png](https://cos.easydoc.net/13568421/files/lng198e5.png) - 我们关闭的节点是一个主节点。而集群必须拥有一个主节点来保证正常工作,所以发生的第一件事情就是选举一个新的主节点: Node 2 。 - 在我们关闭 Node 1 的同时也失去了主分片 1 和 2 ,并且在缺失主分片的时候索引也不能正常工作。 如果此时来检查集群的状况,我们看到的状态将会为 red :不是所有主分片都在正常工作。 - 幸运的是,在其它节点上存在着这两个主分片的完整副本, 所以新的主节点立即将这些分片在 Node 2 和 Node 3 上对应的副本分片提升为主分片, 此时集群的状态将会为 yellow 。 这个提升主分片的过程是瞬间发生的,如同按下一个开关一般。 - 为什么我们集群状态是 yellow 而不是 green 呢? 虽然我们拥有所有的三个主分片,但是同时设置了每个主分片需要对应 2 份副本分片,而此时只存在一份副本分片。 所以集群不能为 green 的状态,不过我们不必过于担心:如果我们同样关闭了 Node 2 ,我们的程序 依然 可以保持在不丢任何数据的情况下运行,因为 Node 3 为每一个分片都保留着一份副本。 - 如果我们重新启动 Node 1 ,集群可以将缺失的副本分片再次进行分配。如果 Node 1依然拥有着之前的分片,它将尝试去重用它们,同时仅从主分片复制发生了修改的数据文件。 ## 问题与解决 ### 1、主节点 主节点负责创建索引、删除索引、分配分片、追踪集群中的节点状态等工作。Elasticsearch中的主节点的工作量相对较轻,用户的请求可以发往集群中任何一个节点,由该节点负责分发和返回结果,而不需要经过主节点转发。而主节点是由候选主节点通过 ZenDiscovery 机制选举出来的,所以要想成为主节点,首先要先成为候选主节点。 ### 2、候选主节点 在 elasticsearch 集群初始化或者主节点宕机的情况下,由候选主节点中选举其中一个作为主节点。指定候选主节点的配置为:node.master: true。当主节点负载压力过大,或者集中环境中的网络问题,导致其他节点与主节点通讯的时候,主节点没来的及响应,这样的话,某些节点就认为主节点宕机,重新选择新的主节点,这样的话整个集群的工作就有问题了,比如我们集群中有 10 个节点,其中 7 个候选主节点,1个候选主节点成为了主节点,这种情况是正常的情况。但是如果现在出现了我们上面所说的主节点响应不及时,导致其他某些节点认为主节点宕机而重选主节点,那就有问题了,这剩下的 6 个候选主节点可能有 3 个候选主节点去重选主节点,最后集群中就出现了两个主节点的情况,这种情况官方成为“脑裂现象”;集群中不同的节点对于 master 的选择出现了分歧,出现了多个 master 竞争,导致主分片和副本的识别也发生了分歧,对一些分歧中的分片标识为了坏片。 ### 3、数据节点 数据节点负责数据的存储和相关具体操作,比如 CRUD、搜索、聚合。所以,数据节点对机器配置要求比较高,首先需要有足够的磁盘空间来存储数据,其次数据操作对系统 CPU、Memory 和 IO 的性能消耗都很大。通常随着集群的扩大,需要增加更多的数据节点来提高可用性。指定数据节点的配置:node.data: true。elasticsearch 是允许一个节点既做候选主节点也做数据节点的,但是数据节点的负载较重,所以需要考虑将二者分离开,设置专用的候选主节点和数据节点,避免因数据节点负载重导致主节点不响应。 ### 4、客户端节点 客户端节点就是既不做候选主节点也不做数据节点的节点,只负责请求的分发、汇总等等,但是这样的工作,其实任何一个节点都可以完成,因为在elasticsearch 中一个集群内的节点都可以执行任何请求,其会负责将请求转发给对应的节点进行处理。所以单独增加这样的节点更多是为了负载均衡。指定该节点的配置为: node.master: false node.data: false ### 5、脑裂”问题可能的成因 1.网络问题:集群间的网络延迟导致一些节点访问不到 master,认为 master 挂掉了从而选举出新的 master,并对 master 上的分片和副本标红,分配新的主分片 2.节点负载:主节点的角色既为 master 又为 data,访问量较大时可能会导致 ES 停止响应造成大面积延迟,此时其他节点得不到主节点的响应认为主节点挂掉了,会重新选取主节点。 3.内存回收:data 节点上的 ES 进程占用的内存较大,引发 JVM 的大规模内存回收,造成 ES进程失去响应。 #### 脑裂问题解决方案: - 角色分离:即 master 节点与 data 节点分离,限制角色;数据节点是需要承担存储和搜索的工作的,压力会很大。所以如果该节点同时作为候选主节点和数据节点,那么一旦选上它作为主节点了,这时主节点的工作压力将会非常大,出现脑裂现象的概率就增加了。 - 减少误判:配置主节点的响应时间,在默认情况下,主节点 3 秒没有响应,其他节点就认为主节点宕机了,那我们可以把该时间设置的长一点,该配置是: discovery.zen.ping_timeout: 5 - 选举触发:discovery.zen.minimum_master_nodes:1(默认是 1),该属性定义的是为了形成一个集群,有主节点资格并互相连接的节点的最小数目。 - 一 个 有 10 节 点 的 集 群 , 且 每 个 节 点 都 有 成 为 主 节 点 的 资 格 ,discovery.zen.minimum_master_nodes 参数设置为 6。 - 正常情况下,10 个节点,互相连接,大于 6,就可以形成一个集群。 - 若某个时刻,其中有 3 个节点断开连接。剩下 7 个节点,大于 6,继续运行之 前的集群。而断开的 3 个节点,小于 6,不能形成一个集群。 - 该参数就是为了防止”脑裂”的产生。 - 建议设置为(候选主节点数 / 2) + 1,